「回路計算 - 合成インピーダンス」の版間の差分

ナビゲーションに移動 検索に移動
131行目: 131行目:
RLC直列回路の合成インピーダンス<math>\dot{Z}</math>のベクトルの向きは、複素数平面の右上(第1象限)または右下(第4象限)または実数軸上となる。<br>
RLC直列回路の合成インピーダンス<math>\dot{Z}</math>のベクトルの向きは、複素数平面の右上(第1象限)または右下(第4象限)または実数軸上となる。<br>
<br>
<br>
RLC直列回路の合成インピーダンス<math>\dot{Z}</math>は、上式の虚部(\omega L - \frac{1}{\omega C})が正・負・ゼロの時、それぞれ<math>\dot{Z}</math>のベクトルの向きが変わる。<br>
RLC直列回路の合成インピーダンス<math>\dot{Z}</math>は、上式の虚部(<math>\omega L - \frac{1}{\omega C}</math>)が正・負・ゼロの時、それぞれ<math>\dot{Z}</math>のベクトルの向きが変わる。<br>
したがって、<math>\omega L - \frac{1}{\omega C} > 0, \quad \omega L - \frac{1}{\omega C} < 0, \quad \omega L - \frac{1}{\omega C} = 0</math>の時で、場合分けして考える必要がある。<br>
したがって、<math>\omega L - \frac{1}{\omega C} > 0, \quad \omega L - \frac{1}{\omega C} < 0, \quad \omega L - \frac{1}{\omega C} = 0</math>の時で、場合分けして考える必要がある。<br>
* <math>\omega L - \frac{1}{\omega C} > 0</math> の場合
* <math>\omega L - \frac{1}{\omega C} > 0</math> の場合

案内メニュー