入力関数 : f ( t ) = 1 ⋯ t ≥ 0 {\displaystyle f(t)=1\quad \cdots \quad t\geq 0} 応答関数 : g ( t ) = 2 ( 1 − t 5 ) {\displaystyle g(t)=2\left(1-{\frac {t}{5}}\right)} y ( t ) = ∫ 0 t f ( τ ) g ( t − τ ) d τ {\displaystyle y(t)=\int _{0}^{t}{f(\tau )g(t-\tau )}d\tau } より、 t < 0 {\displaystyle t<0} の時 f ( τ ) {\displaystyle f(\tau )} と g ( t − τ ) {\displaystyle g(t-\tau )} の重なる部分が無いため、 y ( t ) = 0 {\displaystyle y(t)=0} t = 1 {\displaystyle t=1} の時 y ( t ) = ∫ 0 1 f ( τ ) g ( t − τ ) d τ = ∫ 0 1 f ( τ ) g ( 1 − τ ) d τ = ∫ 0 1 2 ( 1 − 1 5 + τ 5 ) d τ = 2 [ 4 5 τ + τ 2 10 ] 0 1 = 2 ( 4 5 + 1 10 ) = 9 5 {\displaystyle {\begin{aligned}y(t)&=\int _{0}^{1}{f(\tau )g(t-\tau )}d\tau \\&=\int _{0}^{1}{f(\tau )g(1-\tau )}d\tau \\&=\int _{0}^{1}{2(1-{\frac {1}{5}}+{\frac {\tau }{5}})}d\tau \\&=2\left[{\frac {4}{5}}\tau +{\frac {\tau ^{2}}{10}}\right]_{0}^{1}\\&=2\left({\frac {4}{5}}+{\frac {1}{10}}\right)\\&={\frac {9}{5}}\end{aligned}}} t = 5 {\displaystyle t=5} の時 y ( t ) = ∫ 0 5 f ( τ ) g ( t − τ ) d τ = ∫ 0 5 f ( τ ) g ( 5 − τ ) d τ = ∫ 0 5 2 ( 1 − 1 + τ 5 ) d τ = 2 [ τ 2 10 ] 0 5 = 2 5 2 = 5 {\displaystyle {\begin{aligned}y(t)&=\int _{0}^{5}{f(\tau )g(t-\tau )}d\tau \\&=\int _{0}^{5}{f(\tau )g(5-\tau )}d\tau \\&=\int _{0}^{5}{2(1-1+{\frac {\tau }{5}})}d\tau \\&=2\left[{\frac {\tau ^{2}}{10}}\right]_{0}^{5}\\&=2{\frac {5}{2}}\\&=5\end{aligned}}} 0 ≤ t ≤ 5 {\displaystyle 0\leq t\leq 5} の時 y ( t ) = ∫ 0 t 2 ( 1 − t 5 + τ 5 ) d τ = 2 [ τ − t 5 τ + τ 2 10 ] 0 t = 2 ( t − t 2 5 + t 2 10 ) = 2 t − t 2 5 {\displaystyle {\begin{aligned}y(t)&=\int _{0}^{t}{2(1-{\frac {t}{5}}+{\frac {\tau }{5}})}d\tau \\&=2\left[\tau -{\frac {t}{5}}\tau +{\frac {\tau ^{2}}{10}}\right]_{0}^{t}\\&=2\left(t-{\frac {t^{2}}{5}}+{\frac {t^{2}}{10}}\right)\\&=2t-{\frac {t^{2}}{5}}\end{aligned}}}