概要
RL直列回路の合成インピーダンス
RL直列回路は、抵抗RとコイルLが直列に接続された回路で、下図のような回路になる。
図.1 抵抗RとコイルLが直列接続の回路
直列回路の合成インピーダンス
を求める場合、それぞれのインピーダンスを加算することにより求められる。
RL直列回路の合成インピーダンス
は、次式で与えられる。
なお、角周波数
である。
![{\displaystyle {\dot {Z}}=R+j\omega L\quad [\Omega ]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e0a49e27733cd081291f9ed432f4239b94ecc1aa)
であるため、
となり、
RL直列回路の合成インピーダンス
のベクトルの向きは、必ず右上向き(複素数平面の第1象限)になる。
![{\displaystyle {\begin{aligned}{\dot {Z}}&=R+j\omega L\\\left|Z\right|&={\sqrt {R^{2}+(\omega L)^{2}}}\quad [\Omega ]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/615d0beb3867597023ae2834be33da2d46b53e45)
RC直列回路の合成インピーダンス
RC直列回路は、抵抗RとコンデンサCが直列に接続された回路で、下図のような回路になる。
図.6 抵抗RとコンデンサCが直列接続の回路
直列回路の合成インピーダンス
を求める場合、それぞれのインピーダンスを加算することにより求められる。
RC直列回路の合成インピーダンス
は、次式で与えられる。
なお、角周波数
である。
![{\displaystyle {\begin{aligned}{\dot {Z}}&=R+{\frac {1}{j\omega C}}\\&=R-j{\frac {1}{\omega C}}\quad [\Omega ]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/72fef34e9ad25017b0b82506c416ee45d6492fc5)
であるため、
となり、
RC直列回路の合成インピーダンス
のベクトルの向きは、必ず右下向き(複素数平面の第4象限)になる。
![{\displaystyle {\begin{aligned}{\dot {Z}}&=R+{\frac {1}{j\omega C}}\\&=R-j{\frac {1}{\omega C}}\\\left|Z\right|&={\sqrt {R^{2}+\left({\frac {1}{\omega C}}\right)^{2}}}\quad [\Omega ]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8d0e4c260f894d2244337d7298578fd2c1c41cbb)
LC直列回路の合成インピーダンス
LC直列回路は、抵抗RとコンデンサCが直列に接続された回路で、下図のような回路になる。
図.7 コイルLとコンデンサCが直列接続の回路
直列回路の合成インピーダンス
を求める場合、それぞれのインピーダンスを加算することにより求められる。
LC直列回路の合成インピーダンス
は、次式で与えられる。
なお、角周波数
である。
![{\displaystyle {\begin{aligned}{\dot {Z}}&=j\omega L+{\frac {1}{j\omega C}}\\&=j\omega L-j{\frac {1}{\omega C}}\\&=j\left(\omega L-{\frac {1}{\omega C}}\right)\quad [\Omega ]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6bf319e3672dcbc2590963b0f8a2850a52b7fe4e)
であるため、
となり、
LC直列回路の合成インピーダンス
のベクトルの向きは、必ず、虚数軸上となる。
LC直列回路の合成インピーダンス
は、上式の分母が正・負・ゼロの時、それぞれ
のベクトルの向きが変わる。
したがって、
の時で、場合分けして考える必要がある。
の場合
- 上式のリアクタンスが正になるため、合成インピーダンスのベクトルは、虚数軸上の正の向きになる。
の場合
- 上式のリアクタンスが負になるため、合成インピーダンスのベクトルは、虚数軸上の負の向きになる。
の場合
- 上式のリアクタンスが0になるため、合成インピーダンスのベクトルは、複素数平面の原点Oとなる。
- インピーダンスが0ということは、その回路は短絡状態と同じになる。
- また、
すなわち、
は、回路の共振条件である。
![{\displaystyle {\begin{aligned}{\dot {Z}}&=j\omega L+{\frac {1}{j\omega C}}\\&=j\left(\omega L-{\frac {1}{\omega C}}\right)\\\left|Z\right|&={\sqrt {\left(\omega L-{\frac {1}{\omega C}}\right)^{2}}}\\&=\left|\omega L-{\frac {1}{\omega C}}\right|\quad [\Omega ]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7b1208e34c6484dfdb1656e20a01f729eb92becb)
RLC直列回路の合成インピーダンス
RLC並列回路は、抵抗R、コイルL、コンデンサCが並列に接続された回路で、下図のような回路になる。
図.4 抵抗R、コイルL、コンデンサCが直列接続の回路
直列回路の合成インピーダンス
を求める場合、それぞれのインピーダンスを加算することにより求められる。
RLC直列回路の合成インピーダンス
は、次式で与えられる。
なお、角周波数
である。
![{\displaystyle {\begin{aligned}{\dot {Z}}&={\dot {Z_{1}}}+{\dot {Z_{2}}}+{\dot {Z_{3}}}=R+j\omega L+{\frac {1}{j\omega C}}\\&=R+j\omega L-j{\frac {1}{\omega C}}\\&=R+j(\omega L-{\frac {1}{\omega C}})\quad [\Omega ]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/58be2c4701954a25b8f39d91065db67a2d9a3f9b)
であるため、
となり、
RLC直列回路の合成インピーダンス
のベクトルの向きは、複素数平面の右上(第1象限)または右下(第4象限)または実数軸上となる。
RLC直列回路の合成インピーダンス
は、上式の虚部(\omega L - \frac{1}{\omega C})が正・負・ゼロの時、それぞれ
のベクトルの向きが変わる。
したがって、
の時で、場合分けして考える必要がある。
の場合
- 上式のリアクタンスが正になるため、合成インピーダンスのベクトルは、右上の向き(第1象限)になる。
の場合
- 上式のリアクタンスが負になるため、合成インピーダンスのベクトルは、右下の向き(第4象限)になる。
の場合
- 上式のリアクタンスが0になるため、合成インピーダンスのベクトルは、実数軸上の正の向きになる。(
)
- この条件を満たす周波数は共振周波数であるため、コイルLとコンデンサCの直列回路部分は短絡状態と同じになる。
- また、
すなわち、
は、回路の共振条件である。
![{\displaystyle {\begin{aligned}{\dot {Z}}&=R+j\omega L+{\frac {1}{j\omega C}}\\&=R+j(\omega L-{\frac {1}{\omega C}})\\\left|Z\right|&={\sqrt {R^{2}+\left(\omega L-{\frac {1}{\omega C}}\right)^{2}}}\quad [\Omega ]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/80cd95ef3e83cf11baef8a3f4fe14c62692e8efa)
RL並列回路の合成インピーダンス
RL並列回路は、抵抗RとコイルLが並列に接続された回路で、下図のような回路になる。
図.5 抵抗RとコイルLが並列接続の回路
並列回路の合成インピーダンス
を求める場合、
それぞれのインピーダンスの逆数(アドミタンス)を加算して、その逆数をとることにより求められる。
RL並列回路の合成インピーダンス
は、次式で与えられる。
なお、角周波数
である。
![{\displaystyle {\begin{aligned}{\frac {1}{\dot {Z}}}&={\dot {Y_{1}}}+{\dot {Y_{2}}}={\frac {1}{R}}+{\frac {1}{j\omega L}}\\{\dot {Z}}&={\frac {1}{{\dot {Y_{1}}}+{\dot {Y_{2}}}}}={\frac {1}{{\frac {1}{R}}+{\frac {1}{j\omega L}}}}\\&={\frac {j\omega RL}{R+j\omega L}}\\&={\frac {j\omega RL(R-j\omega L)}{R^{2}+(\omega L)^{2}}}\\&={\frac {\omega ^{2}RL^{2}+j\omega R^{2}L}{R^{2}+(\omega L)^{2}}}\\&={\frac {\omega ^{2}RL^{2}}{R^{2}+(\omega L)^{2}}}+j{\frac {\omega R^{2}L}{R^{2}+(\omega L)^{2}}}\quad [\Omega ]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6e7a1a4396d8eb22ec91358ddb184ef96df3cb49)
であるため、
となり、
RL並列回路の合成インピーダンス
のベクトルの向きは、必ず右上向き(複素数平面の第1象限)になる。
![{\displaystyle {\begin{aligned}{\dot {Z}}&={\frac {1}{{\frac {1}{R}}+{\frac {1}{j\omega L}}}}\\&={\frac {j\omega RL}{R+j\omega L}}\\\left|Z\right|&={\frac {\sqrt {(\omega RL)^{2}}}{\sqrt {R^{2}+(\omega L)^{2}}}}\\&={\frac {\omega RL}{\sqrt {R^{2}+(\omega L)^{2}}}}\quad [\Omega ]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ee352af9cb301adf5905008e2c5a091182bc037c)
RC並列回路の合成インピーダンス
RC並列回路は、抵抗RとコンデンサCが並列に接続された回路で、下図のような回路になる。
図.6 抵抗RとコンデンサCが並列接続の回路
並列回路の合成インピーダンス
を求める場合、
それぞれのインピーダンスの逆数(アドミタンス)を加算して、その逆数をとることにより求められる。
RC並列回路の合成インピーダンス
は、次式で与えられる。
なお、角周波数
である。
![{\displaystyle {\begin{aligned}{\frac {1}{\dot {Z}}}&={\dot {Y_{1}}}+{\dot {Y_{2}}}={\frac {1}{R}}+j\omega C\\{\dot {Z}}&={\frac {1}{{\dot {Y_{1}}}+{\dot {Y_{2}}}}}={\frac {1}{{\frac {1}{R}}+j\omega C}}\\&={\frac {R}{1+j\omega RC}}\\&={\frac {R(1-j\omega RC)}{1+(\omega RC)^{2}}}\\&={\frac {R-j\omega R^{2}C}{1+(\omega RC)^{2}}}\\&={\frac {R}{1+(\omega RC)^{2}}}-j{\frac {\omega R^{2}C}{1+(\omega RC)^{2}}}\quad [\Omega ]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/109299c4e3ed67178752af5b92774563277a69c9)
であるため、
となり、
RC並列回路の合成インピーダンス
のベクトルの向きは、必ず右下向き(複素数平面の第4象限)になる。
![{\displaystyle {\begin{aligned}{\dot {Z}}&={\frac {1}{{\frac {1}{R}}+j\omega C}}\\&={\frac {R}{1+j\omega RC}}\\\left|Z\right|&={\frac {\sqrt {R^{2}}}{\sqrt {1^{2}+(\omega RC)^{2}}}}\\&={\frac {R}{\sqrt {1+(\omega RC)^{2}}}}\quad [\Omega ]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/73d609efc49cc5b8220e8f83b00b821834e41af3)
LC並列回路の合成インピーダンス
LC並列回路は、抵抗RとコンデンサCが並列に接続された回路で、下図のような回路になる。
図.7 コイルLとコンデンサCが並列接続の回路
並列回路の合成インピーダンス
を求める場合、
それぞれのインピーダンスの逆数(アドミタンス)を加算して、その逆数をとることにより求められる。
LC並列回路の合成インピーダンス
は、次式で与えられる。
なお、角周波数
である。
![{\displaystyle {\begin{aligned}{\frac {1}{\dot {Z}}}&={\dot {Y_{1}}}+{\dot {Y_{2}}}={\frac {1}{j\omega L}}+j\omega C\\{\dot {Z}}&={\frac {1}{{\dot {Y_{1}}}+{\dot {Y_{2}}}}}={\frac {1}{{\frac {1}{j\omega L}}+j\omega C}}\\&=j{\frac {\omega L}{1-\omega ^{2}LC}}\quad [\Omega ]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d08719f56df71c06d365c7dddaba8029dc151336)
であるため、
となり、
LC並列回路の合成インピーダンス
のベクトルの向きは、必ず、虚数軸上となる。
LC並列回路の合成インピーダンス
は、上式の分母が正・負・ゼロの時、それぞれ
のベクトルの向きが変わる。
したがって、
の時で、場合分けして考える必要がある。
の場合
- 上式のリアクタンスが正になるため、合成インピーダンスのベクトルは、虚数軸上の正の向きになる。
の場合
- 上式のリアクタンスが負になるため、合成インピーダンスのベクトルは、虚数軸上の負の向きになる。
の場合
- 上式のリアクタンスが無限大になるため、合成インピーダンスのベクトルは、虚数軸上の正の向きに無限大となる。
- インピーダンスが無限大ということは、その回路は開放状態と同じになる。
- また、
すなわち、
は、回路の共振条件である。
![{\displaystyle {\begin{aligned}{\dot {Z}}&={\frac {1}{{\frac {1}{j\omega L}}+j\omega C}}\\&={\frac {j\omega L}{1-\omega ^{2}LC}}\\\left|Z\right|&={\frac {\sqrt {(\omega L)^{2}}}{\sqrt {1^{2}+(\omega ^{2}LC)^{2}}}}\\&=\left|{\frac {\omega L}{\sqrt {1+(\omega ^{2}LC)^{2}}}}\right|\quad [\Omega ]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f3807c403f9dc21c03992b980065edbfe1c85591)
RLC並列回路の合成インピーダンス
RLC並列回路は、抵抗R、コイルL、コンデンサCが並列に接続された回路で、下図のような回路になる。
図.4 抵抗R、コイルL、コンデンサCが並列接続の回路
並列回路の合成インピーダンス
を求める場合、
それぞれのインピーダンスの逆数(アドミタンス)を加算して、その逆数をとることにより求められる。
RLC並列回路の合成インピーダンス
は、次式で与えられる。
なお、角周波数
である。
![{\displaystyle {\begin{aligned}{\frac {1}{\dot {Z}}}&={\dot {Y_{1}}}+{\dot {Y_{2}}}+{\dot {Y_{3}}}={\frac {1}{R}}+{\frac {1}{j\omega L}}+j\omega C\\{\dot {Z}}&={\frac {1}{{\dot {Y_{1}}}+{\dot {Y_{2}}}+{\dot {Y_{3}}}}}={\frac {1}{{\frac {1}{R}}+{\frac {1}{j\omega L}}+j\omega C}}\\&={\frac {j\omega RL}{R+j\omega L-\omega ^{2}RLC}}\\&={\frac {j\omega RL}{R-\omega ^{2}RLC+j\omega L}}\\&={\frac {j\omega RL(R-\omega ^{2}RLC-j\omega L)}{(R-\omega ^{2}RLC)^{2}+(\omega L)^{2}}}\\&={\frac {\omega ^{2}RL^{2}+j\omega R^{2}L-j\omega ^{3}R^{2}L^{2}C}{R^{2}(1-\omega ^{2}LC)^{2}+(\omega L)^{2}}}\\&={\frac {\omega ^{2}RL^{2}}{R^{2}(1-\omega ^{2}LC)^{2}+(\omega L)^{2}}}+j{\frac {\omega R^{2}L-\omega ^{3}R^{2}L^{2}C}{R^{2}(1-\omega ^{2}LC)^{2}+(\omega L)^{2}}}\\&={\frac {\omega ^{2}RL^{2}}{R^{2}(1-\omega ^{2}LC)^{2}+(\omega L)^{2}}}+j{\frac {\omega R^{2}L(1-\omega ^{2}LC)}{R^{2}(1-\omega ^{2}LC)^{2}+(\omega L)^{2}}}\quad [\Omega ]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d9e7a3740ed39432a71c37a06c39a4d476eff983)
であるため、
となり、
RLC並列回路の合成インピーダンス
のベクトルの向きは、複素数平面の右上(第1象限)または右下(第4象限)または実数軸上となる。
RLC並列回路の合成インピーダンス
は、上式の分子(特に、
)が正・負・ゼロの時、それぞれ
のベクトルの向きが変わる。
したがって、
の時で、場合分けして考える必要がある。
の場合
- 上式のリアクタンスが正になるため、合成インピーダンスのベクトルは、右上の向き(第1象限)になる。
の場合
- 上式のリアクタンスが負になるため、合成インピーダンスのベクトルは、右下の向き(第4象限)になる。
の場合
- 上式のリアクタンスが0になるため、合成インピーダンスのベクトルは、実数軸上の正の向きになる。(
)
- この条件を満たす周波数は反共振周波数であるため、コイルLとコンデンサCの並列回路部分は開放状態と同じになる。
- また、
すなわち、
は、回路の共振条件である。
![{\displaystyle {\begin{aligned}{\dot {Z}}&={\frac {j\omega RL}{R+j\omega L-\omega ^{2}RLC}}\\&={\frac {j\omega RL}{R-\omega ^{2}RLC+j\omega L}}\\&={\frac {j\omega RL}{R(1-\omega ^{2}LC)+j\omega L}}\\\left|Z\right|&={\frac {\sqrt {(\omega RL)^{2}}}{\sqrt {R^{2}(1-\omega ^{2}LC)^{2}+(\omega L)^{2}}}}\\&={\frac {\omega RL}{\sqrt {R^{2}(1-\omega ^{2}LC)^{2}+(\omega L)^{2}}}}\quad [\Omega ]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/217174d9664aefec8deaa3ff5b0c765e25c978e3)