|
|
143行目: |
143行目: |
| \begin{align} | | \begin{align} |
| \frac{1}{\dot{Z}} &= \dot{Y_1} + \dot{Y_2} + \dot{Y_3} = \frac{1}{R} + \frac{1}{j \omega L} + j \omega C \\ | | \frac{1}{\dot{Z}} &= \dot{Y_1} + \dot{Y_2} + \dot{Y_3} = \frac{1}{R} + \frac{1}{j \omega L} + j \omega C \\ |
| \dot{Z} &= \frac{1}{\dot{Y_1} + \dot{Y_2} + \dot{Y_3}} = \frac{j \omega RL}{R + j \omega L - \omega^2 RLC} \\ | | \dot{Z} &= \frac{1}{\dot{Y_1} + \dot{Y_2} + \dot{Y_3}} = \frac{1}{\frac{1}{R} + \frac{1}{j \omega L} + j \omega C} \\ |
| | &= \frac{j \omega RL}{R + j \omega L - \omega^2 RLC} \\ |
| &= \frac{j \omega RL}{R - \omega^2 RLC + j \omega L} \\ | | &= \frac{j \omega RL}{R - \omega^2 RLC + j \omega L} \\ |
| &= \frac{j \omega RL(R - \omega^2 RLC - j \omega L)}{(R - \omega^2 RLC)^2 + (\omega L)^2} \\ | | &= \frac{j \omega RL(R - \omega^2 RLC - j \omega L)}{(R - \omega^2 RLC)^2 + (\omega L)^2} \\ |
152行目: |
153行目: |
| </math><br> | | </math><br> |
| <br> | | <br> |
| <math>\omega \ge 0, \quad R > 0, \quad L > 0</math>であるため、<br> | | <math>\omega \ge 0, \quad R > 0, \quad L > 0, \quad C > 0</math>であるため、<br> |
| <math>\Re(Z) = \frac{\omega^2 R L^2}{R^2(1 - \omega^2 LC)^2 + (\omega L)^2} > 0, \quad -\infty < \Im(Z) = \frac{\omega R^2 L (1 - \omega^2 L C)}{R^2(1 - \omega^2 LC)^2 + (\omega L)^2} < \infty</math>となり、<br> | | <math>\Re(Z) = \frac{\omega^2 R L^2}{R^2(1 - \omega^2 LC)^2 + (\omega L)^2} > 0, \quad -\infty < \Im(Z) = \frac{\omega R^2 L (1 - \omega^2 L C)}{R^2(1 - \omega^2 LC)^2 + (\omega L)^2} < \infty</math>となり、<br> |
| RLC並列回路の合成インピーダンス<math>\dot{Z}</math>のベクトルの向きは、複素数平面の右上(第1象限)または右下(第4象限)または実数軸上となる。<br> | | RLC並列回路の合成インピーダンス<math>\dot{Z}</math>のベクトルの向きは、複素数平面の右上(第1象限)または右下(第4象限)または実数軸上となる。<br> |
概要
RL並列回路の合成インピーダンス
RL並列回路は、抵抗RとコイルLが並列に接続された回路で、下図のような回路になる。
図.1 抵抗RとコイルLが並列接続の回路
並列回路の合成インピーダンスを求める場合、
それぞれのインピーダンスの逆数(アドミタンス)を加算して、その逆数をとることにより求められる。
RL並列回路の合成インピーダンスは、次式で与えられる。
なお、角周波数である。
であるため、
となり、
RL並列回路の合成インピーダンスのベクトルの向きは、必ず右上向き(複素数平面の第1象限)になる。
RC並列回路の合成インピーダンス
RC並列回路は、抵抗RとコンデンサCが並列に接続された回路で、下図のような回路になる。
図.2 抵抗RとコンデンサCが並列接続の回路
並列回路の合成インピーダンスを求める場合、
それぞれのインピーダンスの逆数(アドミタンス)を加算して、その逆数をとることにより求められる。
RC並列回路の合成インピーダンスは、次式で与えられる。
なお、角周波数である。
であるため、
となり、
RC並列回路の合成インピーダンスのベクトルの向きは、必ず右下向き(複素数平面の第4象限)になる。
LC並列回路の合成インピーダンス
LC並列回路は、抵抗RとコンデンサCが並列に接続された回路で、下図のような回路になる。
図.3 コイルLとコンデンサCが並列接続の回路
並列回路の合成インピーダンスを求める場合、
それぞれのインピーダンスの逆数(アドミタンス)を加算して、その逆数をとることにより求められる。
LC並列回路の合成インピーダンスは、次式で与えられる。
なお、角周波数である。
であるため、
となり、
LC並列回路の合成インピーダンスのベクトルの向きは、必ず、虚数軸上となる。
LC並列回路の合成インピーダンスは、上式の分母が正・負・ゼロの時、それぞれのベクトルの向きが変わる。
したがって、の時で、場合分けして考える必要がある。
- の場合
- 上式のリアクタンスが正になるため、合成インピーダンスのベクトルは、虚数軸上の正の向きになる。
- の場合
- 上式のリアクタンスが負になるため、合成インピーダンスのベクトルは、虚数軸上の負の向きになる。
- の場合
- 上式のリアクタンスが無限大になるため、合成インピーダンスのベクトルは、虚数軸上の正の向きに無限大となる。
- インピーダンスが無限大ということは、その回路は開放状態と同じになる。
- また、 すなわち、 は、回路の共振条件である。
RLC並列回路の合成インピーダンス
RLC並列回路は、抵抗R、コイルL、コンデンサCが並列に接続された回路で、下図のような回路になる。
図.4 抵抗R、コイルL、コンデンサCが並列接続の回路
並列回路の合成インピーダンスを求める場合、
それぞれのインピーダンスの逆数(アドミタンス)を加算して、その逆数をとることにより求められる。
RLC並列回路の合成インピーダンスは、次式で与えられる。
なお、角周波数である。
であるため、
となり、
RLC並列回路の合成インピーダンスのベクトルの向きは、複素数平面の右上(第1象限)または右下(第4象限)または実数軸上となる。
RLC並列回路の合成インピーダンスは、上式の分子(特に、)が正・負・ゼロの時、それぞれのベクトルの向きが変わる。
したがって、の時で、場合分けして考える必要がある。
- の場合
- 上式のリアクタンスが正になるため、合成インピーダンスのベクトルは、右上の向き(第1象限)になる。
- の場合
- 上式のリアクタンスが負になるため、合成インピーダンスのベクトルは、右下の向き(第4象限)になる。
- の場合
- 上式のリアクタンスが0になるため、合成インピーダンスのベクトルは、実数軸上の正の向きになる。()
- この条件を満たす周波数は反共振周波数であるため、コイルLとコンデンサCの並列回路部分は開放状態と同じになる。
- また、 すなわち、 は、回路の共振条件である。