「トランジスタ - トランジスタの特性」の版間の差分

提供:MochiuWiki : SUSE, EC, PCB
ナビゲーションに移動 検索に移動
79行目: 79行目:
<br><br>
<br><br>


== トランジスタの入力特性(IB-VBE特性)における温度特性 ==
== トランジスタの入力特性(I<sub>B</sub>-V<sub>BE</sub>特性)における温度特性 ==
トランジスタの入力特性(IB-VBE特性)は、温度によって変化する。<br>
<u>トランジスタの入力特性(I<sub>B</sub>-V<sub>BE</sub>特性)は、温度によって変化する。</u><br>
データシート上には、温度が-55[℃]、-40[℃]、-25[℃]、25[℃]、100[℃]など異なる温度の時のIC-VBE特性が記載されている。<br>
データシート上には、温度が-55[℃]、-40[℃]、-25[℃]、25[℃]、100[℃]など異なる温度の時のI<sub>B</sub>-V<sub>BE</sub>特性が記載されている。<br>
<br>
<br>
入力特性(IB-VBE特性)において、温度が高くなると特性は左側にシフトする。<br>
<u>入力特性(I<sub>B</sub>-V<sub>BE</sub>特性)において、温度が高くなると特性は左側にシフトする。</u><br>
すなわち、温度が高くなると、同じベース電流IBを流すために必要なベース-エミッタ間電圧VBEが減少する。<br>
すなわち、温度が高くなると、同じベース電流I<sub>B</sub>を流すために必要なベース-エミッタ間電圧V<sub>BE</sub>が減少する。<br>
<br>
<br>
下図は、東芝製2SC1815の入力特性(IB-VBE特性)である。<br>
下図は、東芝製2SC1815の入力特性(I<sub>B</sub>-V<sub>BE</sub>特性)である。<br>
コレクタ-エミッタ間電圧VCEが6[V]、温度が-25[℃]、25[℃]、100[℃]の時の特性が記載されており、温度が高くなると特性は左側にシフトしていることが分かる。<br>
コレクタ-エミッタ間電圧V<sub>CE</sub>が6[V]、温度が-25[℃]、25[℃]、100[℃]の時の特性が記載されており、温度が高くなると特性は左側にシフトしていることが分かる。<br>
 
[[ファイル:ErectricParts Characteristic 4.jpg|フレームなし|中央]]
<br><br>
<br><br>


__FORCETOC__
__FORCETOC__
[[カテゴリ:電子部品]]
[[カテゴリ:電子部品]]

2020年8月31日 (月) 09:41時点における版

概要

ここでは、以下に示すトランジスタの特性について記載する。

  • 出力特性(IC-VCE特性)と飽和領域、活性領域、遮断領域
  • 入力特性(IB-VBE特性)
  • IC-VBE特性
  • 電流伝達特性(IC-IB特性)
  • hFE-IC特性



トランジスタの出力特性(IC-VCE特性)

トランジスタの出力特性(IC-VCE特性)とは、エミッタ接地トランジスタの静特性において、
あるベース電流IBを流している状態で、コレクタ-エミッタ間電圧VCEとコレクタ電流ICの関係を表した特性のことである。

コレクタ-エミッタ間電圧VCEがある一定値を超えるまでは、コレクタ-エミッタ間電圧VCEが増加するとコレクタ電流ICが増加するが、
コレクタ-エミッタ間電圧VCEがある一定値を超えると、コレクタ電流ICはコレクタ-エミッタ間電圧VCEによらず、ベース電流IBに依存する値となる。



トランジスタの飽和領域、活性領域、遮断領域について

トランジスタの出力特性(IC-VCE特性)には、3つの領域(飽和領域、活性領域、遮断領域)がある。

トランジスタをスイッチとして使用する場合は、飽和領域(スイッチがオンの状態)と遮断領域(スイッチがオフの状態)を利用する。
トランジスタをアンプとして使用する場合は、活性領域を利用する。


次に、3つの領域(飽和領域、活性領域、遮断領域)について順番に記載する。

飽和領域

飽和領域とは、ベース電流IBを大きくしてもコレクタ電流ICが増加しない領域であり、出力特性(IC-VCE特性)の青色の箇所となる。
出力特性(IC-VCE特性)の見方によって様々な説明方法があるため、コレクタ-エミッタ間電圧VCEが小さくてもコレクタ電流ICが流れる領域と説明している専門書も存在する。

トランジスタをスイッチとして使用する場合、スイッチをオン状態にするためには、ベース電流を多く流してコレクタ-エミッタ間電圧VCEが最小電圧となる箇所を使用する。
(この最小電圧のことをコレクタ飽和電圧VCE(sat)と呼び、コレクタ飽和電圧VCE(sat)はデータシートに記載されている)
これは、コレクタ-エミッタ間電圧VCEを小さくすることで、オン状態における損失()が小さくなるからである。

活性領域

活性領域とは、ベース電流IBが一定ならコレクタ-エミッタ間電圧VCEによらずコレクタ電流ICが一定となる領域であり、出力特性(IC-VCE特性)の赤色の箇所となる。
つまり、活性領域では、コレクタ電流ICはコレクタ-エミッタ間電圧VCEではなく、ベース電流IBで決まる。

トランジスタをアンプとして使用する場合、この活性領域を利用する。
また、活性領域では、コレクタ-エミッタ間電圧VCEによらずコレクタ電流ICが一定となるため、一定の電流を流す電流源としても利用される。

出力特性(IC-VCE特性)の傾きがコレクタ抵抗RCとなる。
コレクタ抵抗RCは、下式で表される。


コレクタ-エミッタ間電圧VCEを大きくしてもコレクタ電流ICは大きく変化しないことから、活性領域ではコレクタ抵抗RCは非常に大きな値ということになる。

遮断領域

遮断領域とは、ベース電流IBが0[A]でもコレクタ電流ICが0[A]とならず漏れ電流がわずかに流れる領域であり、出力特性(IC-VCE特性)の緑色の箇所となる。
この漏れ電流のことを、コレクタ遮断電流ICEOと言う。(また、コレクタ遮断電流ICEOは、コレクターエミッタ間遮断電流とも呼ばれる)

コレクタ遮断電流ICEOの値が小さければ小さいほど特性の良いトランジスタである。
なお、コレクタ遮断電流ICEOはデータシートには最大値のみが記載されている。

※補足
遮断領域では、トランジスタをスイッチとして使用する場合、トランジスタのスイッチがオフの状態である。
遮断領域は、コレクタ遮断領域とも呼ばれる。

その他 : トランジスタの出力アドミタンス

トランジスタを使用する時、h定数と呼ばれるものを用いることがある。 h定数には、出力アドミタンスhOE、電流増幅率hFE、入力インピーダンスhIE、電圧帰還率hREがある。

ここで、出力特性(IC-VCE特性)と関係があるのは、出力アドミタンスhOEである。
出力アドミタンスhOEとは、出力特性(IC-VCE特性)の曲線の傾きのことであり、コレクタ-エミッタ間電圧VCEの変化に対するコレクタ電流ICの変化の逆数で、下式となる。


なお、単位はS(ジーメンス)である。


トランジスタの入力特性(IB-VBE特性)

トランジスタの入力特性(IB-VBE特性)とは、コレクタ-エミッタ間電圧VCEを一定とした時における、ベース電流IBとベース-エミッタ間電圧VBEの特性のことである。


ベースとエミッタ間はPN接合となるため、ダイオードの順方向電圧特性(IF-VF特性)と同じになる。

シリコンを素材としたシリコントランジスタの場合、ベース-エミッタ間電圧VBEが0.6~0.8[V]以上になると、ベース電流IBが大きく変化する。
ゲルマニウムを素材としたゲルマニウムトランジスタの場合、ベース-エミッタ間電圧VBEが0.2~0.3[V]以上になると、ベース電流IBが大きく変化する。


トランジスタの入力特性(IB-VBE特性)における温度特性

トランジスタの入力特性(IB-VBE特性)は、温度によって変化する。
データシート上には、温度が-55[℃]、-40[℃]、-25[℃]、25[℃]、100[℃]など異なる温度の時のIB-VBE特性が記載されている。

入力特性(IB-VBE特性)において、温度が高くなると特性は左側にシフトする。
すなわち、温度が高くなると、同じベース電流IBを流すために必要なベース-エミッタ間電圧VBEが減少する。

下図は、東芝製2SC1815の入力特性(IB-VBE特性)である。
コレクタ-エミッタ間電圧VCEが6[V]、温度が-25[℃]、25[℃]、100[℃]の時の特性が記載されており、温度が高くなると特性は左側にシフトしていることが分かる。