「統計学 - コーシー分布」の版間の差分

ナビゲーションに移動 検索に移動
 
44行目: 44行目:
\begin{aligned}
\begin{aligned}
N \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \dfrac{\alpha}{\alpha^{2} \left( 1 + \tan^{2}{\theta} \right) } \dfrac{\alpha}{\cos^{2}{\theta}} \, d \theta \\
N \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \dfrac{\alpha}{\alpha^{2} \left( 1 + \tan^{2}{\theta} \right) } \dfrac{\alpha}{\cos^{2}{\theta}} \, d \theta \\
&= N \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \dfrac{1}{\cos^{2}{\theta} + \sin^{2}{\theta}} \, d \theta \qquad \because \tan^{2}{\theta} = \dfrac{\sin^{2}{\theta}}{\cos^{2}{\theta}}\\
&= N \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \, d \theta \qquad \because \sin^{2}{\theta} + \cos^{2}{\theta} = 1 \\
&= N \left[ \theta \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \\
&= N \left[ \theta \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \\
&= N \pi
&= N \pi

案内メニュー