Wiki
ページの作成:「== 概要 == ルンゲ・クッタ法は、微分方程式 <math>\dfrac{dy}{dt} = f(t, y)</math> の数値解法として、カール・ルンゲとマルティン・クッタによって開発された手法である。<br> <br> この手法は、解曲線に沿って複数の点で関数を評価して、それらを適切に組み合わせることにより高精度な近似解を得ることにある。<br> <br> ルンゲ・クッタ法の理論は、テイラ…」
13:47
+6,828